Acrylic leg coffee table: Part 2!

It’s time for the exciting conclusion to this coffee table build: the ebonized walnut top with inlay banding. I know, it sounds complicated! It really isn’t though; you can do all of this build with a circular saw and a router, if that’s all you had.Start by ripping some 4/4 walnut into strips that are 1 5/8″ wide. This will allow for a 3/8″ deep tongue that will go into the plywood, and a 1.25″ solid frame for the plywood. The plywood piece should be 50″ long by 27″ wide. You’ll note that this is a bit different from the measurements I put in the last part for the total dimensions. It’s going to actually be 52.5 x 29.5″ wide. I was originally planning on a 1″ board but 1.25″ looked better. Plane it to be exactly as thick as the plywood.

Using a slot cutting bit with a 1/4″ tall cutter, cut a groove on every edge of the plywood that is centered. Try to get as close to centered as you can when adjusting the bit depth; my plywood had a 1/4″ thick MDF core I used to line everything up. To ensure it’s dead centered, flip the plywood and route again from that side.

Now, create a matching, centered tongue on the walnut lumber that is 3/8″ deep. You can use a router table; I used a dado on my table saw. You could also use the same slot cutting bit, using the bearing to guide it. You have options!

I decided to add a really, really subtle to the bottom of the walnut frame. The legs have a 4 degree slope on them, so I added a 4 degree chamfer to the underside. I used a featherboard to hold it tight, and put that slight chamfer on with the table saw. Barely noticeable, but trying to pull elements together on this design.

Using the miter sled on your table saw, cut mitered corners on everything. Make sure they’re as tight as you can get them and dry fit everything together. Once it looks good, place some Titebond Dark glue in the groove, put everything together, and clamp.

Sometimes you have to get creative with your clamps

I like to put a spline on all my mitered corners to reinforce them. Miters are mostly end-grain joints, so by adding a spline you add a method to connect them with long-grain, which glues better. The easiest way I’ve found to do this on a large piece is use two cutoffs to create a flat reference edge. Then use the slot bit.

You can either immediately glue in a walnut spline, or wait until after the ebonizing to add a contrasting wood.
Here’s how it looks once it’s all put together!

Now comes the truly magical part: ebonizing! Take that solution we set aside a week ago, and strain it through a coffee filter. I tried a few different dilution rates, and I settled on 50% of the mixture plus 50% more vinegar. This gave it a deep, rich black color but allowed some of the grain to still show through.

The reason this works is the mixture we created is actually iron-acetate. It’s a chemical that, when it reacts with tannins in wood, turns the wood black. Any wood with a high tannin content will work; oak, cherry, or walnut. Since walnut is already pretty dark, you may have better results. The grain is also more subtle than oak.

Apply it with a clean soft rag, making sure the walnut is uniformly damp, but not soaking wet. Here’s a video showing me applying some!

Just immediately after applying the solution you can start to see the effects
After one full night of drying. The wood will look less purple once it receives a top coat.

To protect the thin veneer on the plywood for the next stage, coat the top with two coats of a dewaxed shellac sanding sealer. This will keep the ebony from being removed as well.

Mark out your corners. I decided to use 1 inch in from the edge of the walnut plywood. These lines are there to tell you when to stop your router; you’ll use a sharp chisel to clean up the corners.

The inlay banding comes in 40 inch sections. We will use four of them for this table, using a scarf joint to create the longer sections. It’s 13/16ths of an inch wide. You’ll need a straight cutting router bit and a router with a guide fence to route the channel. My router came with a guide, but you may need to buy one depending on your model. You can also clamp a straight edge to the table and use that to guide your router. Make sure you check the depth of cut on a scrap before attempting it on the table.

You can see the marks the router guide left; they will easily sand off from the shellac with a light hand sanding

The only tools you need for cutting the inlay are a sharp knife and a straight edge. In theory, they should be 45 degree angles on each corner. I found the fit turned out better if I used the knife to mark the inside and outside corners, then connected them with the straight edge.

With a funky pattern like this, you’re shooting more for a close match on the miters; it’s very difficult to get an exact pattern match. I was happy with the results. Glue them in using Titebond liquid hide glue. It is urea based, not water based, meaning it won’t swell the inlay and make it warp. Put a straight piece of wood with painters tape on top and clamp it down to hold everything flat.

On the two long sides you’ll need to splice a small strip of veneer in to get the length we need. This is a good place for a scarf joint. The pattern lends well to it as well. Cut a line along the slope of one of the shapes, match it to the other piece, glue in tight for an almost invisible seam.

You can barely tell this was a joint

Splines getting glued in

This is a good time to attach the frame. Use 1″ pocket screws. The guide on my kit says I can use 1.25″ but I found they almost punch through.

Sand, very lightly, with 220 by hand to remove the router marks. Then apply topcoat as usual. I did 3-4 coats of General Finishes Arm-r-Seal in Semi-gloss.

And here’s the finished product!!!

Acrylic leg coffee table Part 1: Building the frame

If you’ve been following my blog, you likely saw my post a few months back about the collaboration I did with Osborne Woodworking on their new acrylic leg line. If you didn’t, here’s a link!

They’ve asked me to do another write up, and I am incredibly thrilled to do so! In the interest of unbiased disclosure, I am making $0 on this project. Osborne provides me with the legs and inlay, but the table is going to a friend’s home. The friend paid only for the additional materials, and I make nothing for my time!

Now that we’ve gotten THAT out of the way, let’s talk about the project. Osborne asked me if I could incorporate inlay strips into a project, and I requested these acrylic legs as well; I’d had a design for those legs marinading in my mind, and I thought these inlay strips would be a perfect fit.

This is the table that was my beginning inspiration. There really aren’t a lot of examples of acrylic legged coffee tables out there. What I liked about this table was the way it uses the acrylic legs to elevate the beautiful wood and granite on top.

Credit:  Allan-Knight Showroom

Now, I have no idea how to cut or process granite. And while I COULD get zebrawood, it seemed a little busy, especially with the brass that would be on my table legs and the inlay on top. Instead, I opted to use African Mahogany for the aprons and ebonized walnut (plywood and lumber framed) for the top.

I’ll post the final measured drawings at the end of the next post! I want to emphasize though that, unlike the last acrylic project, this project requires a bit more lumber processing. The apron height needed to be four inches in order for the threaded rods to line up on the legs, and you won’t be able to find 1x stock in four inch widths. Instead, you’ll need to rip the lumber with a table saw, circular saw, or even a hand saw.

Before you do ANY cutting though, we need to prep the ebonizer. It sounds ominous, but it’s super simple. Take some 0000 steel wool, rinse it with dish soap and water to remove the rust inhibitor. We want rust! Then put it in a jar with some normal white vinegar and let it sit for a week. By doing this now, we make sure they ebonizer is ready once we need it; more to come in the next post!

0000 Steel wool, washed and ready to corrode
DIB Woodworking, proudly sponsored by Heinz…well, not really.  It’s what I had.  I’m sure any 5% vinegar will do.  Foodies, restrain yourself from using cider or wine vinegar!
The chemical reaction creates gas, make sure to add a few holes.  Pro tip:  corn holders are the best for poking baking potatoes too!
Let this sit for a week, then strain through a coffee filter and store.

I was able to build the entire table frame using just two boards of mahogany. Both boards were about 12 ft long and about 5 inches wide. Rip them both to 4.25 inches. In my case, the mahogany was only available in S4S at about $5 per board foot. It was pretty darn straight, but I jointed and planed it down to about 3/4″ thickness before ripping to the final 4″ dimension. The customer’s couch was 78″ long, which meant the coffee table should be about 52″ long. I knew I wanted an inch overhang on each side of the legs, meaning the frame should be 50″ long overall. Subtract out 5″ to account for the combined thickness of two legs, and you get a 45″ apron on each long side. Cut that from the mahogany.

The width of the table was a bit more subjective. I looked at a few examples available online, and most were around 60% as wide as they were long. That seemed a little wide for me, so I opted for 28″. It’s completely arbitrary within the confines of what you think looks best. Subtract 2″ overhang, 5″ for legs, and you arrive at 21″ aprons on each of the short sides.

Mahogany aprons (left and top center) and mahogany corner brackets (bottom center)

The legs attach to the aprons using corner brackets. Rockler sells these, pre-made, in galvanized steel. For almost any other application that needed corner brackets, I’d buy those in a heartbeat. Since the legs are clear acrylic, though, I don’t want the galvanized steel to be visible when you are looking at the table. That means creating your own corner brackets.

Note: This is by far the most complex part of the project. If you lack the tools, or are simply uneasy about it, I think the Rockler brackets would likely work fine with very little impact on the overall look.

The brackets need to accomplish two things: 1) they need to give the legs a firm place to attach and 2) they need to be firmly attached to each adjacent apron to secure the entire frame together. This means putting a 45 degree miter on each edge of the bracket and putting two holes in the center for the bolts to attach.

I wanted the aprons to align just behind the end of the brass band on each side. It required a decent amount of geometry (hello Pythagoras and 64ths of an inch!) to make sure I got everything where I wanted it to be. To save you the trouble, all you need to know is this: the back end of the bracket (the long face, where the miter points are) needs to be about 5.5″ long to accomplish this.  I’ll put the final dimensions in the plan, but my wood came in right at 11/16ths thick instead of a full 3/4″ which is why I’m saying ABOUT 5.5″.  You could do this on a miter saw, but using the miter sled on your table saw will give you much better results; less slop.

The holes in the center of the bracket need to be 1.25″ and 3.5″ from the top, respectively. The bolts are 5/16″ thick, so I went with 3/8″ holes. The extra 1/16th gives us a bit of wiggle room. If you have a drill press, make sure the table is square and drill away. If you don’t, you’ll need to use a drill guide. It’s essential that they be square and plumb, otherwise the miters won’t contact the aprons correctly.

Test the fit.  You want the corner bracket flush to the top of the leg, and the miter sitting flush against the apron.  These were my test bolts, the real bolts are less random.
IMG_20190428_194655.jpg
Tops completely flush

Using a hand drill, make 4 small pilot holes, one inch off each side.  You want these to angle the opposite direction of the miter so that the screws will enter the aprons at 90 degrees.

Now you need to create the rods that will attach everything together.  I couldn’t find any pre-cut 5/16″ rods in the length we need, so I had to cut my own.  I started by inserting the rod all the way, adding 3/4″ for the bracket, and then adding the length of the wingnut, washer, and lock nut.  Overall, 2.5″ seems to be a good length.  You’ll need to cut them by hand with a hacksaw and file the cut ends to fit.  Tip:  thread a wingnut on before you cut the rod, then twist the wingnut so that it goes over the threads you just cut.  Most of the time, that corrects the threading.

Do a test fit on everything.  The brackets may feel a little wobbly; mine did.  Two things will help with that.  First, we’re going to use glue on the miters.  Second, the frame will be attached to the top as well.  That should keep everything snug.

I chose to use hide glue for this project for two reasons: 1) I could easily undo it with water if I needed to fix any of the brackets and 2) it’s urea based, not water based, so it won’t cause warping or waves in the inlay we use later.  If the idea of a cow hide based glue rubs you the wrong way, you can use regular wood glue; just make sure you fit everything really well first.  I’ll address the inlay in the next post.

Drill small pilot holes into the apron being careful not to go through the finished side, glue, and then screw everything together.  1.25″ kreg screws were just right.  I also had good results with 1.5″ #8 screws.  Just be careful not to over drive them.

Add some pocket screws on the sides.  I know, I know: I’ve been a very vocal critic of Kreg screws before, but this is really the perfect application for them.  We want a hidden fastener that will be going into a dimensionally stable top (plywood) and will have no shearing force exerted, only pulling force.  All three of those things add up to pocket screws!

Placement is relatively arbitrary.  I chose 10″ off each leg on the long sides and one in the center.  On the short sides, I did 7″ off each side.  Completely arbitrary.

Check for square by measuring the diagonals before the glue dries.  Let it sit.  We will apply the finish later, once the top is attached and the legs (which will dissolve if the finish touches them) are removed!

 

A new favorite finishing regimen

Wow, it’s been a while since I’ve written anything here. I guess having a baby will do that to you? Slowly, but surely, I’ve been getting some work done, and I wanted to write a quick post on a new regimen I tried on some white oak that I really like. If you’re looking to accentuate the natural character of the wood, and not stain it, this is a great process:

  • Sand the entire piece to 120, then 220 grit with an orbital sander
  • Coat with Danish oil in “natural” finish. Follow the directions carefully, and make sure to rub out all the excess so it dries properly.

  • Let it sit for 3 days to fully dry.
  • Coat with two coats of shellac sanding sealer, sanding at 220 in between.
  • Top coat with your favorite wipe-on finish. I like General Finishes Arm-R-Seal or Minwax wipe-on poly.

That’s it! A great, natural finish that is durable as well. Here’s how it looks on a finished product!

Building a Better Reenactor’s Ammo Box

A while back, my brother offhandedly asked me about building him a replica ammunition box for his Civil War reenactments. At the time, he sent me a link to a YouTube video and a written tutorial on how to make these by hand. Here are some pictures of munitions boxes from that period:

Related image

Source

Image result for civil war ammo box

Source

And here’s a link to the article I’m referencing for reproducing these.

Here’s a link to a site that sells reproduction crates.

The first thing I want to emphasize is that this article was a great guide for starting out, and the author admits his goal was to create a pseudo-ammo crate that was really double stacked to help hide his modern accouterments. 100% historical reproduction was not his goal. But, it is mine!

Right off the bat, I noticed a few issues with the way the box was built. First, the author mentions that the dimensions for the box should be 14.75″x 10.75″x 6.38″, but that 1×6 stock could be used with only minimal loss in height. Presumably, the author was assuming a 1×6 was truly 6″ tall; as those who follow this blog know, that’s simply not the case these days! A 1×6 board is actually only 5.5″ wide, meaning this replica box would be a full 7/8″ too short. The first thing you need to know about Civil War reenactors is that they’re (more often than not) sticklers for accuracy; I couldn’t see that large of a difference being acceptable.

The second issue I noticed was that the author mentioned the sides needed to be dovetailed together, but then proceeded to use what I guess would be called large finger joints? This is an important distinction, because while a finger joint can be strong in modern joinery, it’s only strong because of the large amount of glue area. Modern glues are very water resistant, but Civil War era glues would have been made from cow hide, and water soluble. Meanwhile, the historically accurate dovetail joint gets all of its strength from geometry and does not rely on glue at all! You can see the trapezoidal shape of the dovetail in the first picture above where the wood has chipped off.

Both the tutorial article and the merchant site both reference the Union Army Ordinance Manuals from the time. So, I figured that’s a good place to start. Here’s a link to the full text on Google Books, but I’ve posted some pictures here too of the relevant sections:

Screenshot_20190306-193044.png

Screenshot_20190306-192736.png

There’s a lot of really great information in these two images, but let’s just break down the essentials:

  • White pine boards
  • Dimensions for the .58 Caliber box are 14.75″x 10.75″x 6.38″ (6.38 is that same as 6 and 3/8ths, rounded up)
  • Should contain 1,000 cartridges (this is from the sentence on the previous page I had to crop out)
  • Dovetailed and nailed
  • Wooden handles nailed and clenched
  • Lids (plural, I take this to mean top and bottom) attached with 1.75″ screws.

In the interest of full historical recreation, I also opted to do this using only hand tools. Even my hand tools are certainly more advanced than what they had at the time (they would have used wooden bodied planes, for example), but they’re still the same in form and function.

Let’s start with the dimensions. The article’s instructions say to cut each piece of wood to those dimensions. However, I found references to the fact that these would have been interior measurements, not exterior. CS Cutlery mentions this in their dimensions (though theirs, curiously, still don’t match the manual…). As a woodworker, these dimensions being interior measurements makes a lot of sense to me. The lumber they were working with was by no means universal in any way, shape, or form. Each piece would have been individually surfaced, by hand. As such, there would be no way to know that each box would contain the same amount of ammo if exterior dimensions were given as each board would be a different thickness.

I was able to double check this using the dimensions for the 10 cartridge bundle listed in the manual as well. Each bundle would be approximately 8.67 cubic inches, for a total volume of 867.1 cubic inches of volume per 1,000 cartridges. A box with exterior dimensions as listed above, with side panels of 0.75″ thick (about the thinnest you could reasonably go) would have interior dimensions of 13.25″ x 9.25″ x 4.88″. This gives only 598.11 cubic inches, whereas the interior measurement method would give 1011.63 cubic inches; plenty of room for 1,000 cartridges and paper lining.

Enough of the historical referencing for now, how about some woodworking?

I chose to start with rough cut lumber, since it seemed a bit liked cheating to tout doing this with “hand tools only” if I had it surfaced before I bought it. This board is about 12.5″ wide, 4/4 rough, and 12′ long white pine. If you aren’t a stickler, you can get pre-surfaced pine at any home improvement center; this would simply be 1x material. I doubt Home Depot or Lowes would carry it in this width though, so go to your local lumber yard like I did (thanks WunderWoods!). What you get at HD would be SPF which means ‘Spruce, Pine, or Fir.” I’ll let your degree of accuracy dictate whether or not you care about that.

Big bonus of using Wunderwoods? St. Louis had a major Union arsenal during the war. All of the white pine they used would have come from this area. Since I know Wunderwoods harvested this locally, is it the progeny of a tree that was at one time cut down during the civil war to also make ammo boxes? I’d like to think so!

Image result for civil war ammo box

This wood ammunition box with lid is for .58 caliber rifle musket ammunition. The crate is stamped “Fabricated St. Louis Arsenal January 1865.” http://www.civilwarvirtualmuseum.org/1861-1862/missouri-enters-the-war/st-louis-arsenal-ammunition-box.php

On a board of rough cut lumber, no matter how good your lumber yard is, there’s no good straight reference edges.

You can do all the dimensioning of these boards with four tool(s): A crosscut saw (this is the one I have), a rip saw, a #5 plane (#4 would also work), and a set of chisels. If you get a two sided Japanese Ryoba saw, you can actually get away with just one saw! A dedicated, Western style rip saw is almost impossible to find these days unless you want to spend at least $80. Antique malls and Craigslist are your best bet, though you’ll need to sharpen it (which is a whole ordeal on it’s own)

I’m going to cross-cut everything at least two inches longer than I need to account for more waste when I square everything up. Since we’re working off interior dimensions, add 1.5″ to that to account for the width of the sides (we’re shooting for about 3/4″ thick sides). Then add 2 inches to that to account for waste. This 12 ft board came up JUST short of doing the box on it’s own, if so make sure you buy more like 14 total feet. Coincidentally, 12.5″ is almost dead on the width we need for the top and bottom, so if you can get that width, do! If you can’t, you’ll need to edge glue two pieces together.

Use a square to make a line off one edge as a saw guide, knowing that it won’t be your final cut

After you get the boards knocked down, you need to get to the proper height; in this case, 6.38″. You COULD try to go right to rip cutting, but you still don’t really have a reference edge, so it might not turn out well. Instead, I put the boards in my vice and plane on edge dead flat and approximately square to the face. That gives you an edge from which you can measure off parallel lines.

My phone’s camera was on the fritz, so I lost a few pictures; you should be able to follow just via text. Off that edge you just planed, mark a line the length of the board, parallel and 6.5″ from the flat edge. Use your rip saw to cut just on the outside of that line; that will leave room for final planing.

Now that you’re almost at the width you need, you’ll need to surface both faces flat and parallel to each other. If you have a woodworkers bench, you can use the various clamps and vices on there to hold the board. I just have a regular work bench, so I needed to make bench hooks to help hold the piece while I plane it.

Here’s the process I followed:

  • Plane one face, checking for flat with a ruler or, in my case, a perfectly flat surface like a cast iron table saw top. Make sure it’s also square to that first edge you planed.
  • Plane the other edge square to that face, making sure not to go past the 6.38″ line.
  • Plane the final face, using both edges to check for square. If your edges are square to the first face, and the second face is square to the edges, both faces will be parallel.

After surfacing your first board, repeat with the other three, using the first as a reference for thickness.

This is maybe a quarter of the shavings I made

Now we need to know how thick our sides will be so we can measure the final length of the boards. The best way to do this is put each pair of opposite sides together, measure the total thickness, and then add this to the adjacent length (width) depending on which set you’re measuring. In this picture, my long sides measure about 1 and 13/16ths thick. So, my short sides (10.75″ interior width) need to actually be 10.75+1 & 13/16th long. This is to account for the dovetails (this will make more sense soon).

Using your square, cut a perpendicular line off one side of each board. Then, measure the length you need off that edge, and crosscut the other side to your final dimensions. Use your hand plane to get the width down to 6.38″ if you haven’t done so already.

I use the “dividers” method for laying out my dovetails. Here’s a video of that process for you.

I’m gonna level with you; I’m not great at dovetails, at least not great enough to pretend I can instruct you how to do them. Here’s a video from Paul Sellers on how to make them. Here’s a link to an inexpensive dovetail saw. You can mark the dovetails using only a combination square, but a dovetail guide, marking wheel, and marking knife make this easier. I got all three as a kit from Woodcraft around Christmas for $25. The cut lines made by the knife and wheel help guide the saw blade.

Dovetails are difficult on hardwood. They’re really, really difficult on a soft wood like white pine. Don’t beat yourself up too much, I’m telling myself it adds to the historical character.

I found examples of munitions boxes from that period that had the dovetail “tails” on either the long or short boards. I chose the long boards, the geometry of the tail providing a strong force to keep the box from pulling apart if one were to drag it by the handles.

Here’s a pic of the rough fit for the box bottom/lid. Mine was the exact width needed by pure chance. Surface this just like you did the other boards.

Time to add the screws. The manual specifies 6 screws per lid. Presumably, both the top and bottom lid would have been screwed on, only to be opened at the battlefield or camp. There didn’t need to be a mechanism for closing and reopening these boxes frequently.

For the sake of “hand tools only” I went and bought this old egg beater drill off Facebook Marketplace. It was about $15 and, though it didn’t come with bits, readily accepted a normal brad tip drill bit. A brace and bit setup would likely be more accurate, but my brace only has auger bits, which would be too large.

The screws used at the time would have been slotted, or “flat head” screws, since the Phillips head wasn’t invented until around the 1930s. While they COULD have been brass (as some use in their box construction) I find it unlikely, given the added expense, and whatever you find at your hardware store will likely be zinc coated. The only option I could find was Kennedy Hardware. They carry flat head, slotted, steel wood screws in a bunch of different lengths. Unfortunately, not in 1.75″ (when I was looking). So, I settled for 1.5″; will the reenactors forgive me? Too early to know. (Note: They have No. 12 screws in 1.75″, but those are almost 1/4 inch in diameter, which I was sure was far too large). Before you screw anything together, measure the diagonals. If they’re equal, all your corners are square.

Here’s a look at everything with the bottom attached. Since I am making this as accurate as possible, I will probably ship it to my brother with the top attached too. I’ll also include two little strips of wood and some cut nails so my brother can put them on the inside of the lid, if he likes, to make it more usable for storage during reenactments (see the plans above). Not accurate, but more practical; his call in the end. ATTACHING THE TOP LID SHOULD BE THE LAST STEP YOU DO.

Some gaps on the dovetails, but just as strong. Once painted, you’ll never be able to tell.

The ordinance manual also specifies the dovetails should be nailed. The way a dovetail works, it is very strong in one direction, but separates easily in the other. In the case of this box, it would be very hard to pull the short sides off the box, but relatively easy to pull the long sides off. By driving cut nails into the “tails” of the joint, we ensure the tails will not pull out. Modern wire nails would do a very poor job accomplishing this, as they have very little gripping power. But cut nails are wedge shaped, which compresses the wood as the nail is driven. Here’s an excellent video explaining the advantages of cut nails. Make sure to drill a small pilot hole with these.

I’m going off the original image, above, for my plans. In that image there are handles on the sides, but no rope in the handles. The ordinance manual doesn’t specify rope; an omission that I think points very strongly toward there not being any, given the specificity in all other aspects.

Use the scraps you’ve cut off to make these handles. By looking at the image we can see the handles are about 1/4 of the box height (call it 2 inches), as long as the side, and sit about 2 inches from the top. Use your plane to taper the ends down, then drive some 2 inch long cut nails (3 total) into the handle and through the box. I chose to drill a small pilot hole to aid in this, and prevent the wood from splitting. I purchased mine from House of Antique Hardware. Again, get the plain steel ones, not the galvanized ones.

After the nails are driven through, there should be about 3/8 inch that pokes through the inside. This is where we “clench” the nails. All that means is you hammer the tip sideways until it’s flat. Now that handle will never come off.

Attach the top and that’s it, folks! The manual specifies different paint colors depending on the ammo. This box would get an olive green paint. The manual even includes mixing instructions, but I’d urge caution given the use of turpentine and boiled linseed oil. Premixed, canned paint was not invented until 1866; if you decide to purchase a paint, rather than mix your own, powdered milk paint (not pre-made) would be period appropriate. I’m leaving it raw for my brother to decide what he wants to do with it.

img_20190314_212851.jpg

I hope this is a valuable resource for all the reenactors and woodworkers out there! If you have questions on building the box, please feel free to email me. If there’s anything you think I did wrong in trying to reproduce this box, please let me know!

Update: here’s a link to my etsy store!

https://www.etsy.com/listing/679483392/civil-war-ammunition-crate-1862

If you really want a historically accurate box like this, but don’t have the desire to build one, shoot me an email and we can talk about commissioning a few pieces. dibwoodworkingllc@gmail.com

Lift top “wild” cherry side table

About a month ago, I was asked by Osborne Wood Products to create a step-by-step tutorial for one of their new products: acrylic table legs.

Naturally, I was very excited to take on the task! They provided me with the legs free of charge, but I received no other compensation. I ended up finding some friends who needed a side table for their living room, and we agreed that I’d build the table for just the cost of the remaining materials.

I had a few goals in mind for this build:

  • In the spirit of DIB, I wanted to make this a project that could be done by someone who was moving up from basic DIY skills.
  • The acrylic legs were going to be a bit unorthodox, so I wanted the design of the table to draw on the legs in some ways to bring everything together.
  • It needed to be functional for my friend’s living room. This meant a lid that opened rather than a draw. The additional advantage is that this makes it much more DIB friendly; drawers can be a tough thing to master.

With that in mind, here’s the basic sketch-up: cherry side table diagram

I opted to do the sides (aprons) of the table using what would be called “1×6″ stock, if you were to find it at a home improvement center. I don’t mean construction grade 1×6; these stores will carry craft grade hardwoods in this dimension, most likely red oak and maple. Since I can mill my own lumber, I just went ahead and bought some S2 cherry and milled it to 1×6 stock. In actuality, it’s 0.75″ thick and 5.5” wide. If you’re curious why this these dimensions are different than the label states, revisit my blog post here!

I would have LOVED to have used 1×8 material, because I think the proportions would have come out better. But I couldn’t find any hardwood stock that Home Depot or Lowes carried (and was affordable) in 1×8. Being able to mill to 1×8 isn’t a luxury most DIYers will have, so I stuck with what was common.

Three days after confirming with Osborne, the legs arrived in the mail.

The first thing I did was take them out of their packaging and measure each one. They were all the same length, but there were some varying widths to the wooden parts, at most 1/16th of an inch different from the 2.5″ they were supposed to be. Not a huge deal, just important to know so we can adjust.

This is a good time to lay them out and figure out which legs will go where. I tried to match them so that the front and back legs would have similar widths. I mark them with a BL for back left, and a FR for front right.

I then made marks for each corner so I could keep reference (see the 1 and 2 marked on here.)

Side note: Those four little impressions must be from the machining process, like a lathe chuck. In hindsight, I should have removed them. What I’d recommend is using a miter saw or table saw to take about 1/16th off the end of each wooden block just to remove these.

Next, I cut the cherry boards down to the length I needed (see diagram). Remember, you have to add 0.75 inches on each end of the length to account for the tenons we’re going to cut. You can do this on your table saw, like I did. You can also use a miter saw, circular saw (of you use a carpenters square to keep you at a 90 degree cut) or even a hand saw if you’re careful enough.

As an added measure of safety, I measured the legs in adjacent pairs. By doing this, you essentially multiply the error of each individual leg by 2. Basically, it’s easier to notice a 1/16th difference between 2 combined legs than a 1/32nd inch difference on each. For every fraction of an inch this measures under 5″. add that to the length of the side that will connect those two legs. Ex: If FL and FR together measure 4 and 7/8ths inches across, then the front apron needs to actually be 12.5″ plus 1/8th inch variance (plus 1.5″ total for the tenons).

You always want to cut your mortises first. It’s much easier to make a tenon just slightly thick and then trim it to fit a mortise. Much harder to make the mortise narrow and widen to fit the tenon. I opted for a 3/8 inch thick tenon, which means we need a 3/8 width mortise. I also decided to leave 1/2 inch on the width of the board on each side as the “shoulders” for the tenon.

On each side, mark 1/2 inch down and 5 inches down. These are the lines where we want our mortise to stop. You’ll need to mark this line on all four sides of the legs since we’ll be referencing off them.

Side note: This is a good time to unscrew the acrylic legs. Not only are they cumbersome while we’re doing all this, but Osborne tells me that lacquer thinner will melt them, so they need to come off before we apply the finish anyway.

To do this on a router table, you’ll want to use a 3/8″ straight cutting bit. Use a square placed against the fence of your router table, and mark the edges of the bit on some pieces of tape so you know where to start and stop your cut. I use my calipers to make sure I’m as close as physically possible to being centered. It should be 1 and 1/16th from each side, or 1.0625. You can see on my calipers that I’m 0.0125 inches off. There’s no way I can make an adjustment that accurately.

Instead, what we do is run the piece through, flip it around, and then run it through the opposite direction. That guarantees that slot will be centered. This is also why we cut our tenons slightly thick and trim down; we’ll always end up with something slightly larger than a 3/8 mortise.

Start very shallow, maybe 1/8 inch. Slowly work your way up until you’ve reached 3/4″ in depth. It should look something like this:

The other way to do this is with hand tools, if you don’t have access to a dado stack on your saw. Here’s a blog post where I showed how to do that as well!

To cut the tenons, I decided to use the dado set on my table saw. This is essentially two 1/8 inch wide blades put next to each other. I could have done a 0.75″ thick dado cutter, but then I’d have to move down to 1/4 when I cut the grooves in the sides, and I’d rather just do one setup.

Anytime you are crosscutting (where the grain is perpendicular to the blade) on your table saw, you have to use a stop block on your fence. This keeps the wood from binding between the blade and the fence, which can cause a dangerous event called kickback.

Measure 3/4 inch off the stop block to the opposite edge of the blade, then set the height of the blade to just under 3/16ths of an inch. Use your miter gauge to cut out the tenon on a piece of scrap identical in thickness. Here’s a good video:

The tenon you’re left with will be square edged, but the mortise has rounded edges. Simply take a chisel or utility knife and knock the corners off your test piece.

Try the fit of your test piece. If it looks good, make all the tenon cuts.

If the top of the apron is perfectly flush with the top of the leg, and there are no caps along the joint, you’re set!

Again, here’s a link to the post where I show how to do this by hand. In that case, you’d use a 3/8″ chisel.

Now you need to make the groove for the bottom drawer that will fit in. I opted to use pre-finished plywood on 1/4 thickness. I think anything larger would be overkill. I made the cut with my dado blade, using a featherboard to hold everything flush (always keep the featherboard in front of the blade to avoid kickback.

You could just as easily do this with a router. If you were going to do this without either of those tools, it would be very difficult. You’d have to use a groove cutting hand plane, or you could mark the lines and hand chisel. This would be a good excuse to borrow a tool or find a shop that can cut this for you.

Now’s a good time to brand your piece, if you have one!

I decided to echo some of the round elements of the legs in the rest of the construction. That meant using a roundover bit on all the corners and the bottoms of the aprons.

Nice visualization of all the parts we’ve milled

Before you start gluing anything, you really need to mark your tenons and mortises to make sure you remember what goes where. I find it’s best to put them on the end of the tenon and inside the mortise, since they’d get sanded off if you put them on the outside.

Dry fit everything together and then measure for the plywood bottom. Remember to add about half an inch to the total length and width to account for the two, quarter inch deep groves on each side.

Note: To make this easier, don’t roundover the inside corner of the legs. It was really hard to get the rounded profile right, and it didn’t turn out as perfectly as it could have with a square corner.

Cut your plywood off the large sheet, leaving a little bit extra so you can give it a final, more accurate cut on your table saw. If you don’t have a table saw, just do the final dimensions with your circular saw; the groove can hide some of the imperfections.

I used a hand coping saw to cut the corners out. You could also use a scroll saw or powered jigsaw.

Dry fit once more to make sure it fits as you’d like.

Once all the pieces fit, set everything aside until we’re ready to sand.

Moving on to the top, I also opted to go with 1×6 material. Here’s why I call this my “wild” cherry side table. Look at that grain! The oil is really going to make this pop.

The most important part of this glue-up is making sure the edges are perfectly flat (jointed) and perpendicular to the flat faces. This will ensure that the top is flat(ish) once glued up. Here’s how we’ve done this in previous builds.

My phone deleted the pictures of this piece being clamped and glued, but it’s the same as the process in the previous link. No special joinery or screws needed, just flat edges and glue!

If you’re glue-up came out perfect, skip this next step. But, if like mine, you find it’s a little less than perfect, you’ll need to pull out your hand plane again. I held a long metal ruler over one side of the table to identify the peaks and valleys. Then, I used my hand plane to gently remove those spots. Once I was satisfied with that flatness, I clamped it to the flattest spot in my shop: my table saw top. Then, plane the other side flat and parallel.

Use a table saw, circular saw, or bandsaw to cut to final dimensions.

At this point, you’re in the final stretch! With a powered sander (or a handheld sanding block) start at 120 grit, then go to 150, 220, and 320. The legs from Osborne actually come sanded to 150 already, so I just went to 220 right away on them. 320 is probably overkill for most woods, but cherry can get very blotchy when you finish it, especially if sanded to a low grit. So I went to 320.

For the finish, you have a ton of options available. The least expensive and most user friendly is wipe-on formulated polyurethane; I’ve used this in previous builds. I wanted something that would really penetrate the cherry though, so I went with Minwax “tung oil” varnish. Despite what the name says, there’s no actual tung oil in there; it’s just a wiping varnish. DO NOT buy 100% tung oil for this project; it never dries, and it will not work well in this case.

After two coats of the finish had fully dried, I applied wood glue to the tenon and inside of the mortise, assembled everything, and clamped it in place. The most important thing to do is make sure it’s on a flat surface so you make sure it doesn’t wobble. Also, make sure to measure the diagonals; if they’re equal, you know the table is squared.

I put the legs on during glue up to make sure the table didn’t wobble

I opted to use polished brass “non-mortise” hinges. All that means is you don’t have to chisel any wood out to make the hinges sit flush. Here’s a link to the page on Rockler where you can order them; I think Home Depot may carry them as well.

Mark pilot holes, and use a hand screwdriver or battery screwdriver (not a drill!) to put the screws in.

Turn the table top upside down, place the hinges on there so that the back will overhang by one inch. Pilot holes, and screws. I also decided to add one of these brass lid supports to hold the top open. I may add a second, but one seems to hold well.

Here’s what it looks like when it’s all done!

Finishing the nightstands

The first step to installing the drawers is adding the drawer slides.  Here you can see where I cut 3/4″ wide strips of hardwood (poplar in this case, because I had it sitting around) and made sure it was flush with the side of the drawer front.

I ended up needing to add a little strip of polar to the inside of the fronts to give me a place to attach the slides.

IF THERE’S ONE THING I WOULD DO DIFFERENTLY:  I would have just bought metal drawer slides.  10 inch slides would fit here, with the cleat installed.  If you go that route, just make it so the drawers are 1/2″ narrower on each side than the drawer face.

I put some tape on the side of the drawers so I could mark the top and bottoms of the dado, then transfer this to the frame.

Here it is with all the slide rails attached.  18 ga brad nails hold everything in.  I’m not gonna lie, this was a huge pain.  It took a lot of sanding and re-positioning to get everything to slide smoothly.  Yet another reason metal slides would have been better.

That being said, once these were lined up and waxed (see below) they actually slid really well.

 

I used this handy jig from Rockler to line up the drawer pulls.  You can definitely do this with just a square, measuring off each drawer.  If you do, make sure you’re consistent.  Always measure center from the top, and center from the left, for example.  That way, if one drawer is slightly taller or wider, the drawer pulls will still form a straight line.

IMG_20190117_193948.jpg
This was just a demo, not my final line up.  Obviously, this is nowhere near on center.

We’re going to use figure eight fasteners to hold the top on, just like I did in my table build.  The instructions say to use a forstner bit.  I find it’s much easier to just take a router, make the cut depth identical to the thickness of the fastener, and then route out the spots.  We’ll want four total, only on the left and right sides.  This will allow the wood to expand front-to-back on the top, or in the width of the grain.  

Grease everything up with some paste wax.  I use Johnson’s.  It’s cheap, effective, and also works great at protecting the cast iron on your table saw, jointer, etc.  Apply liberally to the slides and the dados in the drawers, let dry, then buff smooth.  

The drawer pulls came with two different lengths of #8 machine screws.  One too short, the other far too long.  Luckily, most electricians pliers have a handy bolt cutter specifically for #8 machine screws.  Trim to length.

And here’s the finished product!

Building the nightstand drawers

We’re almost at the finish line of yet another project. Luckily, these drawers are pretty straight forward. Just be patient, and make sure to mark all the components so you don’t forget which pieces go together since each drawer will be fitted to each opening individually.

I couldn’t really find any drawer slides that would fit with the design we’re using. The stands are just slightly too deep for a 10″ slide and too shallow for a 12″ slide. So, we’re going to use hardwood rails that will slide on a dado cut into the drawer sides.

Start by milling up some lumber. I measured each drawer individually, and they were all right at 6 and 1/8th inches tall. I had about enough room for a 10 inch deep drawer as well. Alder rarely comes in widths greater than six inches, which meant I needed to glue pieces together to get the width necessary. Most hardwoods will come in wider sections, so you may be able to avoid this step by using another wood.

The drawer faces will be 5/4 alder to start with. Glue the pieces together, and then plane both sides parallel to a thickness of one inch. My jointer is only six inches wide, which initially presented a problem flattening the pieces. However, there’s a cool work around I learned recently. Joint six inches of the face flat (you may need to remove the blade guard, be careful!). This will leave you with a tiny notch of wood on one side (see below). Clamp a piece of plywood to your planer table, and then put the piece down so the six inches that are jointed sit atop the plywood. The notch will overhand the plywood. The rollers on the planer will push everything flat, leaving the entire top surface deep flat and parallel to the portion you already jointed. Then, simply flip and plane off the notch. Here’s a video as well.

Repeat the same procedure with some 4/4 pieces. Final thickness should be either right at or just under 3/4″, depending on how much flattening you need. Don’t go less than about 5/8 though, we need to make a dado into the side and still maintain enough thickness that the drawer won’t break.

At this point, using the measurements you have from each drawer opening, rip the drawers down to width and square the edges. We’ll be making a 1/4″ inch deep sliding dovetail in the drawer faces to attach the sides, so the sides should actually be cut to 10.25″ in length.

Make sure to mark the pieces and group them: one front and two sides per stack.

This is really tight, but I did that intentionally. We’ll do final trimming later.

Use a 1/2″ wide dovetailing bit in your router table, and set it to cut 1/4″ deep. On each drawer face, make a cut through the entire width, on each side, with the outside edge of the dovetail 1/2″ in from each edge of the drawer.

Then, set the router up to take a 1/4″ deep cut that is just about 3/32nd’s of an inch into the wood on one side. In my case, this left the dovetail a little thick and I had to experiment to get the right fit. Just be careful, and use scraps to test the fit.

Now, on the outside edge of each drawer, make a 3/4″ wide groove that is about 1/4″ deep that runs the entire length of the drawer. Make this about 1″ up from the bottom. I used a dado blade on my table saw, you could use a router table as well.

Finally, add a 1/4″ groove on the bottom inside of the drawer sides and the drawer front that is 1/4″ off the bottom of each piece. Here’s how it should look afterward.

Now, cut a piece of 1/4 plywood for the bottoms. I had some leftover pre-finished birch plywood, which is a godsend for these kinds of projects. It looks nice, and it’s one last step. However, you should have quite a bit of 1/4 alder plywood left that could be used here too. Simply dryfit the drawers, measure the dimensions, and then add the depth of each groove on each side (minus a bit, so it can float as the seasons change).

For the drawer back, I opted to use some 1/2″ alder plywood I had around. You could use solid wood here too, but I opted to reuse some scraps. The groove on the bottom is the same as the one on the sides.

Apply glue to the dovetail slots and slide the sides in.

Apply glue to the sides of the plywood. Fit it in place, use a square to make sure everything is good, then use some 1″ 18 ga brad nails to fasten the sides.

Once the glue has dried, dry fit your drawers. They’re going to be pretty snug. That’s OK, it’s easier to remove wood than to add it back! The best way I could find to trim the drawers is what I show in the picture below:

Since you have to remove the blade guard, be very careful doing this. It did a really good job fine tuning everything though. I tried my thickness planer, but it destroyed the side of one of the drawers. Lesson learned!

And now to apply stain and finish (don’t forget to sand first!). I am only going to finish the drawer front pieces, so I used tape to partition everything.

Some of you may be wondering why I didn’t pre-finish these pieces like I have done every other piece of the build. I knew the drawers would need lots of fine tuning, and the only way that can be done is once they’re assembled. I didn’t want to cut a finished edge off and have to refinish it, so I figured this option was best in the long run.